

Minerals, Materials, Energy Security

Michelle Michot Foss, Ph.D. GRIPS 19th GiST Seminar, April 28, 2023

Rice University's Baker Institute for Public Policy

https://www.bakerinstitute.org/global-minerals-production-dashboard

https://www.bakerinstitute.org/global-minerals-trade-dashboard

Do we have "enough"? It depends!

M. Michot Foss using BP, WMC, IMF indexed to 1984. NOTE – GDP on right axis.

center for

energy stud

Rice University's Baker Institute for Public Policy

Fuel and Non-fuel Minerals Output

- In "net zero" scenarios both the energy equivalent **AND** intrinsic energy storage attributes of fossil fuels must replaced.
- Battery metals and materials
 ONLY provide energy storage.
- Energy must be provided from other sources in the equivalent of fossil fuels commitments **IF** fossil fuels are to be displaced.
- **ALL** non-fuel minerals will be needed, not just battery metals and materials.
- See WMD for nf minerals classifications.

MM Foss using *BP*, *WMD*, *EIA* and other. *TOE* is tonnes of oil equivalent. Work in progress. Note that ~20% of oil and gas is directed to materials. Excludes bauxite.

Fuel and Non-fuel Minerals Market Values

- Much of mining industry cash flow derives from...**COAL**!
- The total value of all mined non-fuel minerals is 21% of the total market value of fuel and non-fuel commodities together, based on 2021 production and 2022 market values of ~\$3.5 trillion.
- Miners and sovereigns aspire to replace oil in value, but...
- ...hydrocarbons remain vital for ongoing energy and materials needs, and...
- ...there is no effective producer association (OPEC) for nf minerals (past attempts failed).

center for

energy stud

MM Foss using BP, WMD, EIA and other. Work in progress. Note that market values are for crude oil, natural gas and average refining margins. Excludes bauxite.

NIMTO = "not in my term of office" Challenge of Project Cycle Times

"U.S. Mining: Heightened Risks Of Regulatory Changes As Resource Nationalism Intensifies Globally"

Fitch Solutions / Mining / United States / Tue 12 Oct, 2021 https://www.fitchsolutions.com/m ining/us-mining-heightened-risksregulatory-changes-resourcenationalism-intensifies-globally-12-10-2021

IEA, <u>https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions</u> Note – cash flow profile modified from IEA original grapic by author.

U.S. Nevada Example

https://www.energy.senate.gov/hearings/2022/3/ full-committee-hearing-on-domestic-criticalmineral-supply-chain

Challenge of Sustaining Supply: Copper Example

- Vintaged copper supply stack captures ~80% global production.
- Nearly 40% of current output is from assets older than 1990.
- Many of these are not "ESG compliant".
- Many of the largest, older assets remain in operation because decommissioning not practical.
- As assets age, ore grades decline, paid metal to waste, rock to metal ratios deteriorate.

center for

enere

Rice University's Baker Institute for Public Policy

MM Foss using SPG, accessed via license. Work in progress.

Sources: Mineral nomenclature from USGS, see endnote 4. UBS Research, from https://www.kitco.com/commentaries/2018-09-13/Nickel-Laterite-s-Integral-Role-in-the-Coming-Nickel-Boom-Part-2.html. For ore treatment processes, please see Monhemius, A. J., 1987, Treatment of Laterite Ores of Nickel to Produce Ferronickel, Matte or Precipitate, Imperial College, London, January, https://www.researchgate.net/publication/291165654_Treatment_of_laterite_ores_of_nickel_to_produce_ferronickel_matte_or_precipitated_sulphide and Davenport, W. and Moats, M., 2014, Nickel and Cobalt Production, Treatise on Process Metallurgy: Industrial Processes, https://mail.google.com/mail/u/0/?tab=rm#inbox/FMfcqzGllVqqdbQTprVMRmTWrpNSRjfp?projector=1&messagePartId=0.4. For processing costs, please see Sappor, J., 2021, Commodity Monthly – Nickel April 2021, S&P Global Market Intelligence, April, accessed via license. For global first-use figures, please see Nickel Institute, 2021, About Nickel and Its Applications, https://nickelinstitute.org/about-nickel-and-its-applications/.

Why have U.S. smelters shutdown?

SUSTAINABLE SUPPL

OF STRATEGIC MINERA

DISAGR INSTITUTS

- Many smelters were built close to ore bodies. When ore was exhausted, smelter was not located near low-cost transportation
- Starting in 1960s, some countries (Japan, India, S. Korea and China) recognized the economic benefit of supporting metal smelters leading to new or modernized facilities
- Metal commodity \$/lb exchange warehouses 5 led to stable but low metal prices. Margins became small leading 3 to disincentives to modernized U.S. 1 smelters to compete in 0 global market
- U.S. government actively avoided supporting domestic metal production and instead pushed for the closure of "dirty, old smelters"

Challenge of ESG in Mining and Metallurgy

- Concept the digital mine for optimization, efficiency, safety
- Upstream
 - Fuel switching from diesel electrification coincides with drive to automate (both reduced emissions and improved safety metrics BUT impacts labor force)
 - Remote tech and automation as much as possible drones and robotics for explosives, robotics for extraction and removal
 - Waste and water reduction to extent possible, improved tailings management (safety and public protection), capture residual minerals from waste, options for water resources (community interface)
- Midstream/downstream
 - Improved logistics emissions reductions across supply chains
 - Automation and digitization
 - Pressure on contractors (many mine operations are contracted) and vendors
- For companies of all types measuring, reporting
- Un-level playing fields across counties, investors
- It will take a long time.....

Work in Progress

Who's on first?

China controls:

- More than 90% each of gallium and germanium;
- 80% of rare earth materials with new SOE;
- 70% of graphite/graphene;
- 60% of lithium;
- Nearly 60% of vanadium;
- 41% of indium;
- 36% of cobalt;
- 50% or more of copper refining with comparable shares for other metals;
- International trade (copper, lithium, nickel and other);
- ~60% of wind turbines manufacturing;
- ~70% of solar PV output;
- ~70-80% or more (90+% of announced) of large format battery manufacturing capacity (NMC, LFP).

Chart based on USGS as compiled by CES, Minerals Heartland is Africa, Middle East, Central Asia; China shares based on FP Analytics and other sources as compiled by CES

Work in Progress

How Battery Mfg Capacity Stacks Up

	World	China	China Share of World
NMC Chemistry (where known)			
Fully Commissioned	368	257	70%
Under Construction	299	252	84%
Announced	502	502	100%
% NMC of World, China Total Battery Chemistries (based on Table 2)			
Fully Commissioned	55%	50%	
Under Construction	31%	30%	
Announced	27%	63%	
LFP Chemistry (where known)			
Fully Commissioned	89	85	96%
Under Construction	164	164	100%
Announced	77	74	97%
% LFP of World, China Total Battery Chemistries (based on Table 2)			
Fully Commissioned	13%	16%	
Under Construction	17%	20%	
Announced	4%	9%	

Source: Compiled by authors using BNEF inventory, accessed via license. https://www.bakerinstitute.org/sites/default/files/2022-04/import/research-paper-nickel-041122.pdf

China REE: Monoliths

center for **ENERGY STUDIES** Rice University's Baker Institute for Public Policy

14

Entity	Subscribed Capital	Shares Ratio
SASAC (State-owned Assets Supervision and Administration Commission of the State Council)	RMB 31.21 million	31.21%
CHINALCO	RMB 20.33 million	20.33%
China Minmetals Co.	RMB 20.33 million	20.33%
China Southern Rare Earth Group	RMB 20.33 million	20.33%
China Iron & Steel Research Institute Group	RMB 3.9 million	3.9%
Grinm Group Co.	RMB 3.9 million	3.9%

Policy	Global Supply	International Price	Chinese Price	Resilience
Illegal mining and export	Increase	Decrease (Negative effect)	Decrease (Negative effect)	Improve/strengthen
Chinese environmental regulations	Weaken	Increase (Positive effect)	Increase (Positive effect)	Demote/weaken
Consolidation of rare earth enterprises	Weaken	Increase (Positive effect)	Increase (Positive effect)	Demote/weaken
State-sponsored stockpiling	Weaken	Increase (Positive effect)	Increase (Positive effect)	Demote/weaken

https://www.bakerinstitute.org/research/chinese-behemoths-what-chinas-rare-earths-dominance-means-us

U.S. Enrollments Follow Prices

https://www.smenet.org/What-We-Do/Technical-Briefings/Maintaining-the-Viability-of-U-S-Mining-Education

