Comments at A discussion on how to accelerate commercial deployment of fusion; technology, public private partnership

Hiroshi YAMADA

The University of Tokyo

- Choice of ways to downsize a fusion reactor
- Technical challenges in SPARC towards ARC
- Vertical integration and horizontal collaboration

Acknowledgements to Prof.S.Imagawa at NIFS

1

The 126th GIST Seminar 20th Feb., 2024

Very rough sketching of confinement of fusion plasmas

- Fusion fuels are inevitably in a state of "PLASMA" (ionized gas) because of extremely high temperature beyond several hundreds of millions °C
- "Confinement" is prerequisite for burning

- 1. Size of domain : *L*
- 2. Escaping velocity : $V \propto E / B$ (Electric field E / Magnetic field B)

Then "confinement time" *t* is given by $t = L / V \propto L B / E$

• To secure sufficient *t*, the larger *L* and/or the higher *B*, the better

Large machine like ITER and/or high magnetic field machine like SPARC are convincing from fundamental physics

Two major issues before commercial deployment of fusion energy

1. Control of burning plasmas

china eu india japan korea russia us

2. Downsizing a machine

- Endless growth of machine is a dead end
- Economically feasible compactness

SPARC: Phys.Plasmas 30 (2023)

- Higher magnetic field would be a promising/straight attack choice
- Innovation of plasma confinement (obliged to skip this today)

Technical challenges in SPARC towards ARC

- Large scale HTS (High Temperature Superconductivity) magnet system has never been built before !! Really first-of-a-kind
 - 1. HTS is brittle material
 - → degradation by thermal stress and electro-magnetic force is concerned
 - 2. Difficulty of quench protection because of slow normal propagation velocity in HTS

These two issues are not only of much importance for **SPARC** but also these resolutions have huge and wide impact on magnet technology/application

fundamental understanding and novel idea

• Plasma heating by ion cyclotron frequency wave is relevant for a fusion reactor ?

← requirement of the antenna in the vicinity of plasma

Then prospect towards ARC

- Helium-free cryogenic facility ? Helium is becoming a scarce resource Cooling capability against nuclear heat
- 2. HTS / high-magnetic-field coil system to accommodate the space for blanket

Needs both vertical integration and horizontal collaboration

「ITER計画、幅広いアプローチをはじめとする我が国の核融合研究の推進方策について」 On measures to promote fusion research in Japan, including ITER project and wide range of approaches MEXT, June 27, 2007

"Partnership"

between actors (cooperation and cooperation to solve common problems and use resources efficiently)

H.Yamada, Fusion Research Working Group at MEXT, 2007

Needs both vertical integration and horizontal collaboration

- Importance of vertical integration towards a fusion reactor
- 1. Define targets and motivate R&D program
- 2. To be a reliable reference for diversified options
- Getting to essential solution of critical technical issues via horizontal collaboration
- 1. Fundamental and basic research with exact science
- 2. Acceleration of R&D in a short turnaround by private funding
- Plan B is not an alternative option against Plan A
- Plan B is essentially how you bring Plan A to higher level of refinement through learning from partners (even competitors)