Overcoming Innovation gaps:

Technology Management & Entrepreneurship Initiatives

Professor C C Hang
Head, Div. of Engg & Technology Management,
Faculty of Engineering & Exe Director,
Institute for Engineering Leadership

Contents

- Examples of Innovation Challenges
- Innovation Gaps
- Management of Technology (MOT)
 Education Example of Singapore
- Entrepreneurship Education: A New Attempt by Singapore

 Contrary to some dominant logic, there was actually little success by the Venture Capital industry to nurture breakthrough innovation, especially in recent years. Many high-tech start-ups indeed either failed rapidly or struggled to survive in crossing the valley of death.

Example 1: The invention of **carbon nanotubes** in the early 1990s was thought to be a major breakthrough with many potential applications – hence large amount of public funding was provided by government funding agencies globally. After 18 years, with more than 50,000 publications (still increasing annually now), many early start-ups based on nanotube technology with VC backing failed to create any impactful product!

[from Eugene Fitzgerald, et. al "Inside Real Innovation", Nov 2010]

D-ETM

Example 2: Segway Human Transporter

 In early 2000s, DECA R&D Corp spent more than US\$100M to develop the Segway Human Transporter – an engineering marvel involving the use of advanced control techniques, sophisticated microprocessors (x10), aviationgrade gyros, an accelerometer, etc. It has no brakes, no throttles, no gear-shift and no steering wheel!

• VC firm Kleiner Perkins (which launched Netscape, Amazon.com, etc) invested US\$38M for a 7.5% stake – valuing DECA at US\$500M!

arang been at

- -- Individual investors included Paul Allaire, CEO of Xerox
- -- Intel Chairman Andy Grove gave it a thumbs up
- Big expectations: e.g. "Segway
 will be to the car what the car
 was to the horse and buggy";
 DECA prepared a large factory to
 produce 40,000 Segways/month.

D-ETM 5

Radical vs Disruptive Innovations

(Christensen)

What Is the Innovator's Dilemma?

Good/Innovative Firms understand:

Old Technologies New Technologies

(vacuum tube)(eventually)(transistor)(minicomputer)replaced by(microcomputer)(laser-jet printing)(ink-jet printing) ??(TV tube)(flat-panel display)

Yet most of the established firms failed when attacked by new entrant firms using *certain* technologies with initially *inferior* performance!

(1997 Book by Harvard's Professor Clayton Christensen, "The Innovator's Dilemma: Why New Technologies Cause Great Firms to Fail?")
("certain" & "inferior" refer to "disruptive" but not 2nd rate

D-ETM

technologies)

Its Consumer Electronics Div was a leader in vacuum

A Long List of Such Failures

RCA

DEC

A US \$7.6 B giant in 1986 and a model in the book "In Search of Excellence").

Xerox

Missed the chance in tabletop photocopiers; failed to commercialise many of its PARC inventions.

IBM

Missed the advent of mini-computers; successful initially in

the PC business but eventually pulled out.

The Dilemma: These leading companies were innovative and well-run; they also had sophisticated market knowledge and distribution channels. Yet the way decisions were made, when confronted with *disruptive* changes in technology and market structure, sowed the seeds of eventual failure!

Disruptive Innovation/Technology

New technologies are developed continuously to foster improved product performance. They are known as <u>Sustaining Technologies</u> as they are responsible for improved performance of <u>established</u> <u>products</u>. They could be either incremental or discontinuous (radical/break-through) in character. (Same marketplace → little organizational impact; some people may need to learn new skills.)

→ Sustaining Innovation

Occasionally, <u>Disruptive Technologies</u> emerge. They result in <u>worse</u> <u>product performance</u>, at least in the near-term. Hence they underperform established products in mainstream markets. But they have other features that a few fringe (and new) customers value (they are typically cheaper, simpler, smaller and frequently more convenient to use).

Disruptive Innovation

D-ETM

Figure 2 The Disruptive Innovation Model

Example 3: GE's Portable Ultrasound Business

Back in 2002, GE served the Chinese ultrasound market with machines developed in the US and Japan. But the expensive (\$100K) bulky devices sold poorly. Then a local team in China leveraged GE's global resources to develop a cheaper, portable machine using a laptop computer enhanced with a probe and sophisticated software. Its $\$30K \sim \$40K$ price was more acceptable and some rural clinics bought it.

In late 2007, GE introduced a model that sold for as low as \$15K, which became a hit in rural clinics, where doctors used it for simple applications such as spotting enlarged livers and gallbladders and stomach irregularities.

D-ETM 11

Even more exciting, the innovation found new applications in the US, where portability is critical or space is constrained, such as at <u>accident sites</u> where the portable machines are used to diagnose problems like pericardial effusions (fluid around the heart); in <u>emergency rooms</u> where they are used to identify conditions such as ectopic pregnancies; and in <u>operating rooms</u>, where they aid anaesthesiologists in placing needles and catheters.

[6 years after their launch, the sales of portable ultrasounds grew from \$4 M in 2002 to \$278 M in 2008 (50 to 60% growth per year !)]

-- What can we learn from the above GE example?

Example of an Innovation with just good enough performance but very affordable; also a candidate to emerge first in the developed market and then find its way to create a new application in the advanced market – Strategy of Disruptive & Reverse Innovation.

(Reverse flow: from 3rd to 1st world!)

D-ETM 13

D-ETM 15

Role of Universities in Innovation Education

 Recognizing the above "Innovation Gap", Universities globally have tried to extend their missions to cover <u>Management of Technology (MOT)</u>.

MBA: too long, too general (and for CEOs)

MOT: started by MIT in 1981;

> 200 programmes worldwide (still very few in Asia)

- In the National University of Singapore, we have experience in two different paths:
 - -- 1st attempt for 8 years in the Business School; then stopped for 4 years;
 - -- Revived in 2004 in the Faculty of Engineering!

Modules from MSc(MOT)

Core Modules Code

Management of Technological Innovation MT5007/BMA5115

Finance for Engineering & Technology Management MT5011

in July/August.]

IP Management MT5001

Management of Industrial R&D MT5002

Creativity and Innovation MT5003

Systems Engineering Project Management SDM 5004

Marketing of High-Tech Products & Innovation MT5012

[An optional 2-day foundation module on Marketing and Strategy will be offered

D-ETM

18

Electives

Management

•	Decision Analysis	IE5203
•	Knowledge Management	SDM5003
•	Creativity and Innovation	MT5003
•	Strategic and New Product Development	MT5006
•	Technology Intelligence & IP Strategy	MT5010
•	The Financial & Business Aspects of IP	MT5015

Organization & Systems **Aspects**

Strategic Aspects

> Management and Organization (2 MCs) **BMA5004 SDM5002**

Systems Engineering

Systems Architecture **SDM5001**

Systems Approach to Tech & Innov MT5014

	Electives	National Univ
	Corporate Entrepreneurship	MT5008/BMA5404
Entrepreneurship	Technopreneurship	BMA 5108
Aspects	Analyzing High-Technology Opportunities	MT5009
	User-centred Engineering &Product Development	MT5004
	 Business Models for High-Tech Products 	MT5016
	Managing Operations	BMA 5010
Operational	Ouality Planning and Management	IE5121

Operational Aspects

Industrial Logistics IE5401

MOT Research Project (8 MCs) MT5900 **IP Laws for Scientists and Engineers** MT5005

Management Practicum MT5900 & MT5901

D-ETM

- Each module is 4 MCs (3 hrs/week x 13 weeks)
- Need 40 MCs to graduate (either 10 modules or 8 modules + research project)
- At least 16 MCs from the core modules

2 years (part-time)

[Graduate Certificate in MOT – 4 Modules]

[Being adapted to become Executive Education modules]

Strength

- Drawing modules from both Engineering and Business Depts
- Mixed pedagogy of lectures and case discussions (60/40 to 50/50)
- Balance: Scholar-Teachers/Adjunct Professors from industry
- Balance: global perspectives from Visiting Professors

D-ETM 2

Role of Universities in Innovation & Enterprise

- In recent years, there is a recognition of a second
 "Innovation Gap", in that large % of patents from
 universities and public Research Institutes research remain
 un-utilized. Universities and RIs globally have responded by
 extending their missions to cover <u>Innovation & Enterprise</u>.
- In the Institute for Engineering Leadership in NUS, we have created a process to iterate through Technology, Market and Implementation so that potential start-ups will improve the odds of survival
 - → a kind of realistic innovation education with the help of experienced business angels as mentors.

Entrepreneurship Defined

It's ALL about IMPACT!

D-ETM Page 23

From <u>Technology to Market</u> – Company Pipeline Creation

D-ETM

Page 24

Imperative #1: Create a mental shift in the mind of the inventor

D-ETM 25

Inventor vs

- WOW!
- Look at this no one has done this before!
- The world will die for it!

Investor

- How is this unique?
- Who cares?
- How can we make money on it?
- How good is the team?

D-ETM Page 26

Bridging the 'Innovation Gap'

Technology ←→ Business

 Inventors need to be exposed to how investors and business people look at the world

D-ETM Page 27

TechVentureLab

- Objective exposes NUS FoE researchers to the process of creating a commercialization strategy for their technologies
- Action learning weekend experience
- Industry experts supervise small groups of researchers
- Requires presentation to a group of industry experts/investors at the end of the Lab
- End Result ability to articulate technology's commercial potential and societal impact

What did you like most about the TechVenture workshop?

This weekend was a real eye-opener for me.

I got a clearer picture of how to create market value.

Bridge between tech and market, better understanding of what customers are looking for.

D-ETM

Page 29

From Technology to Market – Company Pipeline Creation

National University of Singapore

Step 1:TechVentureLab

Selection

Step 2: LaunchPad

Validation

Step 3:
FundingLab

\$\$
Scalable Start-up with a

Page 30

validated model

Imperative #2: Build a team around the inventor

D-ETM 3

LaunchPad Project Course (8MCs)

- Objective to create companies based on preselected NUS technologies
- Assemble teams of engineering and business (MBA/MOT) graduate and PhD students (4-6 per team)
- Industry experts supervise each team
- Academic inventor designates a PhD or graduate student to provide technical input about the innovation
- End Result a potential company with a validated business model

Principle 1:

Entrepreneurship

_

Management of EXTREME uncertainty

D-ETM 33

Business Model Canvas

D-ETM Page 34

Principle 2:

Entrepreneurship

=

Elimination of Guesses

=

Validated Learning

D-ETM 35

Principle 3:

Entrepreneurship

=

Disciplined Method of Build-Measure-Learn

Build-Measure-Learn

Page 37

Principle 4:

Entrepreneurship requires special metrics to be successful

What are the main assumptions to be tested?

- Value
 - How is this unique?
 - Who cares?
- Scalability
 - How big is the market?
 - Can we build a large company?
- How can we make money on it?
 - What is the margin per unit?

Business Model

D-FTM

20

LaunchPad Results

- Out of eight teams
 - Seven identified viable business models and secured Letters of Interest from Customers
 - One identified viable markets but requires more research for the technology to be ready
- 4-7 investor follow-up meetings per team!

LaunchPad Graduates

- DOT Medical a disruptive mammography diagnostic device without radiation
- InnoMem high performance dye removal water membrane for textile and other industries
- EasyArray a revolutionary protein research platform with high specificity, ease of use and low cost
- FlexNano flexible, low cost TCO layer for solar and electronics markets
- **Digi Surgical** next generation digital microscope
- EnerCap new material for energy storage
- **CentoFlow** oil removal water membrane
- Gene&Health drug efficacy and toxicity prediction

D-ETM 4

What did you like most about LuanchPad?

Hands-on experience, industry exposure, freedom to be creative

It is a life-changing class for me.

Being thrown into the real world and talking to real customers – cannot learn this in business school

D-ETM Page 42

VENTURE FUNDING LAB

Objective – focuses on start-up equity funding.

- Challenge the teams to identify creative ways to fund the company by getting out into the market and 'pounding the pavement'.
- Teams/companies that are selected for the Funding Lab satisfy four criteria:
 - 1. Know their customers and their needs and have validated that their product addresses them.
 - 2. Offer unique value and have proof to this effect.
 - 3. Have validated assumptions in their business model and can prove that the product will make money.
 - 4. Have a great team that is passionate about the start-up.

D-ETM 43

Institute for Engineering Leadership

From Market to Technology: Unique Opportunity for NUS/SG

Creating Impact in Emerging Markets

Info Sessions

Step 1: Growth Lab

Selection

Step 2: Frugal Innovation Lab

Validation

Funding/SME

\$\$

D-ETM 45

GROWTH LAB:

Objective – identify issues and define problem statements for emerging market needs in SE Asia.

- "On the ground" assessment in identified markets based on prior market research of potential interest areas.
- Defining industry problem statements based on this research.
- Identifying technical partners both within and outside NUS.

FRUGAL INNOVATION LAB:

Objective – create prototypes to address Emerging Market needs in SE Asia based on problem statements defined in Growth Lab

- Undertaken by teams of engineering and business graduate students.
- Students prototype, then test in local markets.

D-ETM 4

